If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6x2 + 215x + 308 = 0 Reorder the terms: 308 + 215x + 6x2 = 0 Solving 308 + 215x + 6x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 51.33333333 + 35.83333333x + x2 = 0 Move the constant term to the right: Add '-51.33333333' to each side of the equation. 51.33333333 + 35.83333333x + -51.33333333 + x2 = 0 + -51.33333333 Reorder the terms: 51.33333333 + -51.33333333 + 35.83333333x + x2 = 0 + -51.33333333 Combine like terms: 51.33333333 + -51.33333333 = 0.00000000 0.00000000 + 35.83333333x + x2 = 0 + -51.33333333 35.83333333x + x2 = 0 + -51.33333333 Combine like terms: 0 + -51.33333333 = -51.33333333 35.83333333x + x2 = -51.33333333 The x term is 35.83333333x. Take half its coefficient (17.91666667). Square it (321.0069446) and add it to both sides. Add '321.0069446' to each side of the equation. 35.83333333x + 321.0069446 + x2 = -51.33333333 + 321.0069446 Reorder the terms: 321.0069446 + 35.83333333x + x2 = -51.33333333 + 321.0069446 Combine like terms: -51.33333333 + 321.0069446 = 269.67361127 321.0069446 + 35.83333333x + x2 = 269.67361127 Factor a perfect square on the left side: (x + 17.91666667)(x + 17.91666667) = 269.67361127 Calculate the square root of the right side: 16.421742029 Break this problem into two subproblems by setting (x + 17.91666667) equal to 16.421742029 and -16.421742029.Subproblem 1
x + 17.91666667 = 16.421742029 Simplifying x + 17.91666667 = 16.421742029 Reorder the terms: 17.91666667 + x = 16.421742029 Solving 17.91666667 + x = 16.421742029 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-17.91666667' to each side of the equation. 17.91666667 + -17.91666667 + x = 16.421742029 + -17.91666667 Combine like terms: 17.91666667 + -17.91666667 = 0.00000000 0.00000000 + x = 16.421742029 + -17.91666667 x = 16.421742029 + -17.91666667 Combine like terms: 16.421742029 + -17.91666667 = -1.494924641 x = -1.494924641 Simplifying x = -1.494924641Subproblem 2
x + 17.91666667 = -16.421742029 Simplifying x + 17.91666667 = -16.421742029 Reorder the terms: 17.91666667 + x = -16.421742029 Solving 17.91666667 + x = -16.421742029 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-17.91666667' to each side of the equation. 17.91666667 + -17.91666667 + x = -16.421742029 + -17.91666667 Combine like terms: 17.91666667 + -17.91666667 = 0.00000000 0.00000000 + x = -16.421742029 + -17.91666667 x = -16.421742029 + -17.91666667 Combine like terms: -16.421742029 + -17.91666667 = -34.338408699 x = -34.338408699 Simplifying x = -34.338408699Solution
The solution to the problem is based on the solutions from the subproblems. x = {-1.494924641, -34.338408699}
| 11x-3(x-5)=5310 | | 3/4-4/8 | | 3x^2+14x+60=0 | | 3x^2+16x+60=0 | | 2x^2-2.5x-6=0 | | 3x^2+25x+60=0 | | 10x-5(x-2)=1865 | | -3x^2+1=0 | | 4x^2+25x+60=0 | | 9/14-11/18 | | (8c^9)1/3 | | x^2+11x-45=0 | | 4x^2+30x+60=0 | | 3x^2+30x+60=0 | | 5/6+1/10 | | 3x^2+30x+40=0 | | 7x-4x-3=24 | | 4x^2+30x+40=0 | | (6/x)+(8/x+5)=3 | | 4x^2+30x+75=0 | | 4x^2+25x+75=0 | | 3x^2+25x+75=0 | | 4(7x+3)=236 | | 6x^2+25x+75=0 | | 2x^2+25x+75=0 | | 1/5-1/7 | | 5(8-6x)=-140 | | 5x^2+20x+75=0 | | 0*x=1/2 | | 5x^2+25x+75=0 | | 2e^3x=8 | | 4x^2+25x+120=0 |